WHAT IS GENERATIVE Al CAPABLE OF?

Text Generation

Prompt: Write a proof of the fact that there are
infinitely many primes; do it in the style of a
Shakespeare play through a dialogue between two
parties arguing over the proof.

GPT-4: Enter FIRST PARTY and SECOND PARTY.

FIRST PARTY: Thou dost not understand, my friend,
There simply is no upper end To primes, those
numbers indivisible, No matter if it seems impossible.

SECOND PARTY: But how dost thou so surely know?
To prove this truth, what canst thou show?

FIRST PARTY: Consider this, my doubtful peer, A
clever proof that will make clear: Assume that there’s
a final prime, The largest one we’ll see in time. Let’s
call this number "P" for short, And then, my friend,
we will purport To build a number "Q" that’s new,
One larger than "P" and prime too.

Example from https://arxiv.org/pdf/2303.12712.pdf

SECOND PARTY: But how, my friend, will this be
done? The proof is not yet fairly won.

FIRST PARTY: It’s simple, friend, just wait and see,
We’ll multiply the primes, that’s key. All primes from
two to "P" combined, Will make this new "Q" we will
find. But one thing more we must include, To make
the proof more watertight, We’ll add a one onto the
end, And now the proof is in our sight.

SECOND PARTY: | see it now, it’s crystal clear, For "Q"
must be a prime, my dear. It can’t divide by any prime,
All smaller than itself in time. And since we chose "P"
as the last, This proves that our assumption’s past.
There is no final prime, we see, The numbers go on
endlessly.

Image Editing

A variety of tasks involve

automatic editing of an

image:

* Inpainting fills in the (pre-
specified) missing pixels

* Colorization restores
color to a greyscale image

* Uncropping creates a
photo-realistic
reconstruction of a
missing side of an image

Inpainting

Colorization

Uncropping

23

Figure from Saharia et al. (2022)

Text-to-Image Generation

* Given a text description, sample an
image that depicts the prompt

* The following images are samples from
SDXL with refinement

Prompt: close up headshot, futuristic old
man, wild hair sly smile in front of
gigantic UFO, dslr, sharp focus, dynamic
composition, rule of thirds

24

Figure from https://stablediffusionweb.com/

Music Generation

.................

MusicGen

This is the demo for MusicGen, a simple and controllable model for music generation presented at: “Simple and Controllable Music Generation”

EER for longer sequences, more control and no queue.

Condition on a melody (optional) File or Mic

lofi slow bpm electro chill with organic samples O file mic

Drop Audio Here

Click to Upload

MusicGen

* Atransformer decoder model over quantized
units (discrete elements of a codebook of audio
frames)

* Interleaves sounds by adjusting how codebooks
attend to each other

* Permits conditioning on text and/or audio
samples

Figure from https://arxiv.org/pdf/2306.05284.pdf

o

» 0:15/0:15

Residual codebooks

Residual codebooks

orF T

=~

=~
£

k

=

Flattening Pattern
OO0 BAERNED
a0 BannnEnn B
D Oopooosn 0o
EJ Lu4¥LuELLu

$2 83 S84 S5 S 57 Sy S

Sequence steps

(B

=

S4n-3 S4n-2 San-1 San

Coarse First Pattern

oln‘o

L]

B[]

$2085 S S %

81

0

IJ‘

oo (e | |
o e | |

l@ﬂrﬂ

1 Snr2 Saed

Sequem‘e steps

el

San-1 San

.meHTTII

0| ..

l

0 i

Residual codebooks

Residual codebooks

Parallel Pattern
N DA [
 OAannoe |
B R -
.mugwumulm

S S22 83 S S5 S

o or

=~

Sequence steps

Delay Pattern
o (oo Lo JIMEs]Cs) Jlsa]lss]
o [o]Co TSI 0T - S
o] I) SIS
hEﬂW\FmﬁIE

SIS 8y 8 85 %

=~

N

Sequence steps

)])

25

Code Generation

u v v v v - -
- -

tGP'

I want to write & customized optimizer in pytorch, the optimizer should do:

1. the parameters for the optimizer is learning rate, momentun ,veigth decay, d_dim, k and factor alpha
2. the optimizer goes through each parameter in the netuork, and then

-- Get the gradient of this parameter, reshspe it to 2D by looping through the dimensions, and keeping the dimension whose actual
dimension (shepe) is equal to d_dim, do an SVD decomposition of the parameter so W = U\Sigma V.

-~ Keep the top k singular vectors of W, so we get a new matrix W_k = U \Sigma k V.

-- Keep the top 2k singular vectors of W, o we get a new matrix W_{2x} = U \Sigma_{2k} V.

-- Normalize W_k according to the momentum of the F-norm of W_{2k}.

-- Truncate each coordinate of W_k to the top alpha percentile of all the coordinates, in absolute value.
-- Apply momentum on W_k, and then update the network parameters using this momentum.

-- Apply weight decay.

Figure 1.3: We queried GPT-4 three times, at roughly equal time intervals over the span of a month

while the system was being refined, with the prompt “Draw a unicorn in TikZ”. We can see a clear GPT-4:

evolution in the sophistication of GPT-4’s drawings.

GPT-4 vs ChatGP

Prompt:

A function f is called {increasing}_{emphasize!} if £(s) £(t) holds for every s t. Consider the formula:
limit_{x goes to 0} {limit when n approaches infinite} underscore{

\matrix[[sum of i from 1 to n (f(nx) - integral from O to x sin(nx) dx),

((x + 2/8)"2 - 5)/((4x-1/x"2) /(n xor 3)), \\ , ..., partial f(x/n)

over partial x * (e"{-i*omega n x} + 3(x#7)) , f inverse of (x mod n)]]

multiply \matrix{1, 1, ..., 1\\1, 1, ..., 1} }

{grey_color{this gives us a good impression about the function}}

Convert the above paragraph to LaTeX.

GPT-4:

A function f is called increasing if f(s) < f(t) holds for every s < t. Consider the formula:

: +2)2-5
SIy (fna) — 7 sin(na) da), GEAVE
n@3 cee
lim lim 5 " X [1 1 1:|

z—0n—ro0 1 1 ... 1

U o (e"'“'"” +3(@#7), [l ol n)

this gives us a good impression about the function

Example from https://arxiv.org/pdf/2303.12712.pdf

for p in group['params']):

if p.grad is None:
continue

grad = p.grad.data

reshape grad to 20

grad_2d = grad.reshape(-1, group['d_din'])

SVD decomposition

U, S, V = torch.svd(grad_2d)

keep top k singular vectors

Gk = UL:, :group['k']] [torch.disg(SC:group['k'11) f§

VI:, :group['x']].T

keep top 2k singular vectors

G_2k = U[:, :2¢group['k'1] [§] torch.diag(S(:2egroup['x'11)

[v, c2egrouwpl'ill.T

normalize G_k

G_k /= torch.norm(G_2k, pe2)

truncate G_kx

threshold = torch.quantile(torch.abs(G_k),

group['alpha'])

G_k[torch.abs(G_k) < threshold] = 0

apply momentun

if 'momentus_buffer' not in group:
group['momentun_buffer'] = torch.zeros_like(G_k)

group['momentun_buffer'] = group['momentun'] «

group['momentun_buffer'] + G_k

update parameters

p.data.add_(-group['1r'] » group['momentun_buffer'])

apply veight decay

if group['weight_decay'] '= 0:
p.data.add_(-group['weight_decay'] » grouwpl['lr'],
p-data)

ChatGPT:
def step(self): def step(self):
for group in self.param_groups: for group in self.param_groups:

for p in group['parame']:
if p.grad is None:
continue
grad = p.grad.data
grad = grad.reshape(-1, grad.shape[-1]) # reshape to 20

SVD decomposition
u, &, v = torch.svd(grad)

Keep top k and 2k singular vectors
k = group['k']

v.2k = v[:,:2¢k]

Normalize according to momentus of F-norm of G_2k
grad_k = u_k [toreh.disg(ex) @ v_x.t0)

norm_2k = #_2k.nora()

grad k = grad k * group['momentus'] / norm 2k

Truncate to top alpha percentile

alpha = group['alpha'l

percentile = grad k.sbs().flatten().kthvalue(int(alpha «
grad_k.numel()))

grad_klgrad k.abs() < percentile] = 0

Apply weight decay
p.data.add_(-group['1r'], grad_k + group['uveight_decay']
+ p.data)

Figure 3.4: GPT-4 vs ChatGPT at implementing a customized Pytorch optimizer module. We
highlight the astuteness of GPT-4 vs the mistake by ChatGPT at ‘applying momentum’.

26

Video Generation

e Latent diffusion
models use a low-
dimensional latent
space for efficiency

* Key question: how
to generate multiple
correlated frames?

* ‘Align your latents’
inserts temporal
convolution/
attention between
each spatial
convolution/
attention

* ‘Preserve Your Own
Correlation’ includes
temporally
correlated noise

27

Figure from https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt

SCALING UP

The Pile:

Training Data for LLMs

An open source dataset for
training language models
Comprised of 22 smaller
datasets

Favors high quality text
825 Gb = 1.2 trillion tokens

PubMed Central

FreeLaw

Composition of the Pile by Category

= Academic * Internet = Prose * Dialogue * Misc

Bibliotik
ArXiv

StackExchange u!
PMA
USPTO NIH |OpenWebText2 Wikipedia DM Math I YT

29

Figure from

InstructGPT uses
Reinforcement
Learning with Human
Feedback (RLHF) to
fine-tune a pre-
trained GPT model

From the paper:

“In human
evaluations on our
prompt distribution,
outputs from the 1.3B
parameter
InstructGPT model are
preferred to outputs
from the 175B GPT-3,
despite having 100x
fewer parameters.”

RLHF

Step 1 Step 2 Step 3
Collect demonstration data, Collect comparison data, Optimize a policy against
and train a supervised policy. and train a reward model. the reward model using

reinforcement learning.

A prompt is A prompt and A new prompt »
sampled from our Explain ha moon several model Explain 9 moon is sampled from W G
prompt dataset. landing to a 6 year old outputs are landing to a 6 year old the dataset. about frogs
sampled.
' ? o o , v
A labeler A . The policy PPO
. _0
demonstrates the @ MO 1. 9 . generates N -
desired output y satalitoot.. ancat an output. \.\gg{/
o 4 AN J
behavior. Some people went \‘/ *
tothe moon.. A labeler ranks
the OUtpUtS from @ Once upon a time...

This datais used SET best to worst. 0-0-0-0 Y
to fine-tune GPT-3 M The reward model .
with supervised S calculates a S

e e % ./ T\
learning. 2 . . reward for N

- This qata is used RM the output.
BRBR to train our ./}??‘Q. '
reward model. =y The reward is
—
0-0-0-0 used to update Fe
the policy
using PPO.

Figure 2: A diagram illustrating the three steps of our method: (1) supervised fine-tuning (SFT), (2)
reward model (RM) training, and (3) reinforcement learning via proximal policy optimization (PPO)
on this reward model. Blue arrows indicate that this data is used to train one of our models. In Step 2,
boxes A-D are samples from our models that get ranked by labelers. See Section 3 for more details
on our method.

30

Memory Usage of LLMs
How to store a large language |Model |MegatronlM [GPT3

. # parameters 8.3 billion 175 billion
model in memory? P > &
.) full precision 30 Gb 651 Gb
— full precision: 32-bit floats half precision 15 Gb 325 Gb

— half precision: 16-bit floats
— Using half precision not only

reduces memory, it also speeds ERDNRD

up GPU computation VY 2 16 €l
. . . TPU v3/v 2Gb
— “Peak float16 matrix multiplication =il >

. . Tesla V100 GPU 32Gb

and convolution performance is 16x
NVIDIA RTX A6000 48 Gb

faster than peak float32

Tesla A100 GPU 80 Gb

performance on A100 GPUs.”

Distributed Training: Model Parallel

Cute we the bt <are
| | Transformer layer N]
[I Transformer layer N-1]
(_Transformer layer 2]
(Transformer layer 1)

L)
1 | |

<coe> Cats are the best

(a) Transformer-based LM

There are a variety of
different options for
how to distribute the
model computation /
parameters across
multiple devices.

Figure from

Device 1 Device 2

[Layer 3 part 1]‘ [Layer 3 part 1]

/\

(Layer2part1 |, '

Layer 2 part 1]

I
I
|
|
I
|
I
|
I | P I
1
|
|
|
1
|
|

|
‘ I
N -

(b) Operation partitioning
(Megatron-LM)

Matrix multiplication
comprises most
Transformer LM
computation and can be
divided along rows/columns
of the respective matrices.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(c) Microbatch-based pipeline
parallelism (GPipe)

The most natural division is
by layer: each device
computes a subset of the
layers, only that device
stores the parameters and
computation graph for
those layers.

X I
| Device 5 [Transformer layer 5] I
b e e e e e e e I
,,,,,,,,, - 2
' Device 4 [Transformer layer 4] |
! -

I

[Transformer layer 1 J E
I

Device 1

—

(d) Token-based pipeline
parallelism (TeraPipe)

A more efficient solution is
to divide computation by
token and layer. This
requires careful division of
work and is specific to the
Transformer LM.

32

Figure from

Parameters

1T

100B

10B

1.0B

Cost to train

10°t
FLOPs

1023

1025

—— Approach 1
—— Approach 2
—— Approach 3

X% X %

Kaplan et al (2020)

Chinchilla (70B)

Gopher (280B)

GPT-3 (175B)
Megatron-Turing NLG (530B)

33

34

o
ha

o @
S S
5 O
C ~

N
S

*
o

O
&
(&

s & 3
4«§§

Ra
S

Timeline: Language Modeling

Timeline: Image Generation

GENERATIVE Al IS PROBABILISTIC MODELING

GenAl is Probabilistic Modeling

p(Tty1 | T1y-- -, T4)

What if | want to model
EVERY possible
interaction?

...or at least the interactions of the
current variable with all those that came
before it...

(RNN-LMs)

RNN Language Model

RNN Language Model: p(w1,ws, ..., wr) = | [p(w: | fo(we—1,...,w1))

p(Wv W W3) cec) W6) =

The p(W1)

(The J (Cbat | p(w, | fo(w,))

[_The J(bat J(made] p(W3 fo(w,, w,))

(_The J[_bat J(_made][noise] p(w, | fo(ws, Wy, Wy))

[The J [bat J[made][noise J[at] p(wy | fo(w,, ws, w,y, w,))

[The][bat][made | noise [at [night | p(W6 fe(W W, W , W, W1))
Key Idea:

(1) convert all previous words to a fixed length vector
(2) define distribution p(w; | fo(wW¢, --., W,)) that conditions on
the vector

