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Abstract
Microphone distance adaptation is an important and challenging
problem for far field speech recognition using a single distant
microphone. This paper investigates the use of Cluster Adap-
tive Training (CAT) to learn a structured Deep Neural Network
(DNN) that can be quickly adapted to cope with changes in the
distance between the microphone and speaker at test time. A
speech corpus was created by re-recording the Wall Street Jour-
nal (WSJ0) audio using far-field microphones with 8 different
distances from the source. Experimental results show that un-
supervised adaptation of the CAT-DNN model achieved up to
0.9% absolute word error rate reduction compared to the canon-
ical model trained on multi-style data.
Index Terms: deep neural networks, speaker-microphone dis-
tance, acoustic modeling, adaptation

1. Introduction
Recent progress in acoustic modeling using context dependent
Deep Neural Networks (DNNs) has shown promising results on
many tasks beating the conventional Gaussian Mixture Models-
Hidden Markov Model (GMM-HMM) systems [1]. However,
there still exists a big performance degradation if the acoustic
conditions of the testing data are very different from that of the
training data. This mismatch may arise from one or many of
the factors like speaker, channel, background noise, etc. Im-
proving performance of DNN for classification job at the same
time minimizing or at least preventing the degradation in the
performance due to the mismatch is a challenging task and have
gained a lot of interest among the research community. The
broad strategy to tackle training-testing mismatch is to either
adapt the model better to the testing conditions (model com-
pensation) or to adapt the testing features to fit the model better
(feature compensation).

Similar to the case of porting clean DNN models to noise
or to new speakers, porting close talk DNN models to far field
speech causes degradation in performance [2]. The techniques
for speaker or noise adaptation like regularized or selective fine-
tuning [3, 4], inserting a layer of linear transform [5, 6, 7],
etc. might not be very helpful as these techniques require huge
amount of data [8] to estimate the large number of parameters
involved.

One of the prominent technique to adapt DNN models on
far-field speech is to combine speech signals from multiple dis-
tant microphones via concatenation or beam forming [9, 10].
However, these signal processing techniques deal with con-
stantly distant speech [2, 11]. Such systems require different
setup for close and far field recognition. For automatic meet-
ing transcription task in an ad-hoc fashion, microphone array

setup might not be available, making it difficult to apply these
techniques. Other proposed techniques try to calibrate the ad-
hoc microphone array and localize the speaker [12, 13]; still
these techniques require multiple microphones to perform the
calibration. Also, most of these techniques assume the position
of speaker to be invariant during an utterance and have little
scope in terms of frame level adaptation. Ideally, the adapta-
tion framework should be robust and capable enough to allow
users to move freely and change distance within an utterance.
Some proposed techniques include augmenting per-frame dis-
tance descriptor [11] similar to speaker descriptors as done in
speaker adaptive techniques [14]. However, extracting good de-
scriptors requires a separate system trained with enough data
from multiple varying distance sources.

In this paper we aim to demonstrate a distance adaptation
technique which is capable of addressing these requirements.
The problem we try to investigate here is adapting to varying
speaker distance to the microphone. This is not a microphone
array scenario where multiple audio signals for same utterances
are used; instead we only have access to a single microphone
for this task. This scenario tries to imitate meeting transcrip-
tion task using a single microphone, where speakers can be at
variable distances from the microphone. Further, we don’t as-
sume that the speaker, or the speaker distance is known during
the testing and hence each utterance is treated independently.
The Cluster Adaptive Training (CAT) framework for DNN ap-
plied here, uses DNNs as multiple bases of a canonical paramet-
ric space. During adaptation, an interpolation vector (for this
canonical parametric space), is estimated and used to combine
the multiple DNN bases into a single adapted DNN, thereby
minimizing the amount of adaptation data needed. The idea is
to compensate the variation in the model space using few pa-
rameters. These few parameters can be estimated at utterance
level or frame level allowing the scope for intra-utterance vari-
ation. The main contributions of the paper are:

• We present a new varying distance speech corpus for
studying ad-hoc microphone distance adaptation. The
unique property of the corpus is high inter channel vari-
ability in terms of source-microphone distance under
reasonable limit of meeting scenarios.

• We demonstrate CAT as a basic model space source-
microphone distance adaption technique on the collected
data.

Rest of the paper is organized as follow: In Section 2, we
discuss the CAT framework; in Section 3 we explain proposed
CAT for distance adaptation and the adaptation technique. In
Section 4, we explain the data. The results are discussed in
Section 5, following which paper is concluded in Section 6.



2. Formulation of Cluster Adaptive
Training

A simple feed forward deep neural network with layers i= 1 to
L is a set of operations on input feature. For each input instance
x, each layer perform the operation as:

zi(x) = f
(
W ihi(x) + bi

)
(1)

where,

hi(x) =

{
x, if i = 1

zi−1(x), otherwise

f =


exp(xk)

dim(x)∑
j=0

exp(xj)

, if i = L

σ = 1
1 + e−xk

, otherwise

A relatively complex level of mixing the information is by
training individual models with some invariant speech charac-
teristic, and then mixing the learned representation of some or
many hidden layers. One such technique to mix representa-
tion is CAT. CAT [15] or multi-basis training [16] for DNN
is a way to combine two or more basis DNNs to adapt to un-
seen condition with limited amount of data using limited num-
ber of parameters. Prior work has investigated the technique
for speaker adaptation. We are first to propose and show that
it can be applied for robust distance adaptation. In multi-basis
model proposed in [16] each or some of the hidden unit acti-
vation (Activation-CAT) of the adapted models is interpolated
as:

ẑi(x) =

K∑
k=1

λkσ
(
W i

kz
i−1(x) + bik

)
(2)

In the case of the CAT model proposed in [15] the interpolation
is done in the weight space (Weight-CAT) as:

ẑi(x) = σ

{
K∑

k=1

λk

(
W i

kz
i−1(x) + bik

)}
(3a)

= σ
(
Ŵ izi−1(x) + b̂i

)
(3b)

where,

Ŵ i =

K∑
k=1

λkW
i
k

b̂i =

K∑
k=1

λkb
i
k

Though both have shown similar performance for speaker
adaptation, Weight-CAT model is more powerful as it is com-
putationally more efficient. Once the λk are estimated the re-
sulting weights (Ŵ i) can be calculated for whole utterance and
only one overall transform per CAT layer need to be calcu-
lated. However, in case of the Activation-CAT all the trans-
forms are calculated independently and resulting activation is
interpolated, which is dependent on the individual frame.

3. Cluster Adaptive Training for Distance
Adaptation

A distance independent DNN (DI-DNN or canonical) model
can be converted into a CAT-DNN model by inserting distance

dependent (DD) layers or modules. The DD modules can be
inserted per training condition for one or many layers of the
DI-DNN.

Figure 1: Turning a DI-DNN model into CAT-DNN model
without the canonical module and CAT-DNN model with the
canonical module

The training procedure (version of retraining) for proposed
CAT is similar to the proposed method for speaker adaptive
training in the prior work [17, 16]. As shown in Fig.1 the canon-
ical or the DI-DNN module trained on pooled multiple condi-
tion data acts as the initialization for the CAT-DNN system. De-
pending on the number of distance conditions and availability
of data DD modules are initialized with the duplicate value as
of the DI module (layer). The weights for DD modules (W i

c )
are learned only by the data from distance condition c. This is
done by switching off all other DD modules when a frame from
distance condition c is feed forward i.e. by assigning the λc as
either 1 or 0. After the DD modules converge the λc and DD
modules are updated in alternate epochs. Finally, the whole net-
work is fine-tuned with small learning rate. The final set of λc

is discarded.
During testing each of the DD module along with the com-

mon part of the network act as a cluster. The weight of all the
DD modules are initialized equally to sum to 1. The interpo-
lation weights (λc) of these DD modules can be estimated per
utterance or per condition in supervised manner or unsupervised
manner (by using the canonical model to generate pseudo tran-
scripts). Further the weights can also be adapted at per frame
level. The effective operations as performed by a CAT-DNN
during testing for a CAT applied layer becomes:

ẑi(x) =
∑
c

λcσ
(
W i

cz
i−1(x) + bic

)
(4)

In certain scenarios it might be helpful to include the origi-
nal canonical module along with the DD modules. This can be
easily incorporated in the training. Instead of duplicating the
original canonical module one for each resulting DD module,
new DD modules are added per condition. These new DD mod-
ules are initialized with random small weights. The canonical
module is always weighted 1. The newly added DD modules are
learned by the same technique as discussed earlier by training
the DD module only with λc as either 1 or 0 till convergence.
Followed by updating DD modules and λc intermittently.

During testing weight of all the DD modules are initialized
equally to a sum to 1 and adapted in same manner as explained
earlier. However, the canonical module is always weighted 1



even during testing. In this case the effective expression be-
comes:

ẑi(x) = σ
(
W izi−1(x) + bi

)
+
∑
c

λcσ
(
W i

cz
i−1(x) + bic

)
(5)

4. Varying Distance WSJ0 (VD-WSJ0)
For concentrating on the effect of distance factor in the con-
text of meeting scenario we create our own speech corpus. The
work uses re-recorded WSJ0 [18] as speech corpus for training
and testing. The standard WSJ0 data is a single channel speech
data recorded with a Sienhieser microphone. For making multi-
ple channel distance varying data with this single channel data,
while preserving the original speaker variations, we performed
data duplication at various distance by the setup as shown in the
Fig.2.

Figure 2: Data collection setup. The relative position shown is
with respect to the playing iPad at the instance

We used 8 iPad Air for data collection. Each of the iPad
is placed tangentially on a circle of diameter 2 meters at equal
angles from the center. All the iPads are aligned in same or-
der (left front end microphone and right top end speaker) while
traversing the circle clockwise. Noise conditions in the room
are nominal.

In the setup, the speaker-phone of the iPads acts as the
source and the primary microphone acts as the receiver. Most
of the iPads comes with in-build microphone arrays for back-
ground noise cancellation. We only used the primary micro-
phone without any signal pre-processing by the microphone ar-
ray. For generating the multichannel speech data each of the
iPads played 1

8 th of the training data and 1
8 th of the testing data

while all other iPads recorded the audio. The data is then sorted
according to the relative position from the source clockwise (or
effectively counter-clockwise). Recording data is such circular
fashion with iPad taking turn to play makes audio slightly dif-
ferent from the case when only single iPad is playing and all
other are recording. The effect of the speaker-phone and the
microphone quality mismatch is arguably reduced. As speaker-
phone and microphone pair effect is now equally present in all

the 8 relative positions. This makes data easy to analyze from
the distance perspective.

The WSJ0 SI-84 training set has 7138 utterances spoken by
83 speakers to be used as training and development set. While
330 separate utterances spoken by 12 speakers used as testing
set. In our version of data we have same number of utterances
per relative distance. Hence, a particular utterance has 8 differ-
ent distance based versions, which refers to scenario of a single
speaker repeating speech at different distances. Also, all the ut-
terances as recorded from a microphone refers to all the speak-
ers speaking from a fixed distance to the microphone. Pooling
various non repeating data from different distances lead to in-
teresting meeting scenarios.

Table 1: Approximate distance (in meters) of the playing
speaker-phone from the micro-phone

Position RP0 RP1 RP2 RP3 RP4 RP5 RP6 RP7

Distance 0.2 0.6 1.2 1.6 2.0 2.0 1.6 0.8

Table 1 gives the approximate distance of the various micro-
phone from the playing speaker-phone. RP0 (relative position
0) refers to the position of the iPad playing the utterance. RP1

refers to the immediate clockwise position to the playing iPad
and so on. The RP7, hence refers to the last clockwise position
and the immediate anti-clockwise position to the playing iPad.
Though some condition have similar distance the orientation of
the micro-phone is different and hence all the testing results are
reported for all 8 positions separately.

5. Experiments
5.1. Setup

A single HMM-DNN system is trained for relative positions
RP0 and RP4 using 39 dimensional MFCC with delta and
delta-delta features with a splicing context window of 5 to the
left and 5 to the right followed by single global CMVN trans-
form per relative position. Training alignment is obtained by
HMM-GMM cMLLR system trained on Kaldi toolkit[19] on
MFCC features with same configuration. The point to notice is
that we are not doing speaker adaptation; speaker labels are just
used to get better training sequence to develop a stronger DNN
baseline to show the applicability of our method. During DNN
training and testing the speaker labels are not used. The DNN
are trained using cross entropy criteria, with per layer discrim-
inative pre-training initialization with dropouts using CNTK
[20]. During testing the data are normalized per utterance.

Table 2: WER on varying distance from speaker to microphone
D0 D1 D2 D3 D4 D5 D6 D7 Avg

M0 19.1 20.5 25.9 30.0 30.5 31.0 29.2 29.0 26.9
M4 24.1 23.3 25.4 26.0 26.4 25.9 26.1 25.7 25.4

Hereafter, Di refers to the data recorded by microphone of
RPi andMi refers to the model trained on training subset ofDi

for i = 0 to 7. Table 2 shows the performance of two extreme
baseline models trained with only one seen condition. The trend
indicates the performance of an unadapted system with only sin-
gle distance condition training data. It suggests that the WER
increases as the distance between training and testing condition
increases. Also, as distance of the source from microphone in-
creases WER increases even for the matching conditions.



Table 3: WER on multi-style trained models
D0 D1 D2 D3 D4 D5 D6 D7 Avg

M04 20.7 21.0 25.2 27.4 27.9 27.2 27.1 26.7 25.4
M0246 22.8 22.1 25.4 25.9 25.7 25.2 25.9 24.8 24.7

Table 3 shows the WER on the models trained with multi-
style/pooled data. Here pooled data has same number of utter-
ances as single condition case however the utterances are pooled
from different conditions. For example M04 model refers to a
training meeting scenario with two group of speakers, one at
distance RP0 and other at distance RP4, however during test-
ing again the speakers can be at any of the 8 relative positions.

5.2. CAT on Single Layer

We take M04 multi-style trained model as the canonical model
and perform CAT at each of the layers of the canonical model
one at a time. We consider two DD modules one each for D0

and D4. While fine-tuning the DD module the canonical mod-
ule is frozen; and while re-estimating the interpolation param-
eters whole network is frozen. The interleaving update for DD
modules and interpolation parameters is done for 2 epochs each
with learning rate of 0.05, halved after each epoch. Whole net-
work is fine tuned with small learning rate for single iteration in
the end. During testing unsupervised adaptation is performed
by taking the hypothesis and alignment from the decoding of
the canonical model. The parameters are initialized to sum to
1 and learned per utterances with learning rate of 0.01. The re-
sults for adapted CAT Model without the canonical module are
shown in the Table 4. Table 5 shows the result of CAT under
same configuration but with the canonical module. Each row
refers to the layers on which the CAT is applied. All these con-
figuration requires only 2 parameters per model to be adapted
during testing.

Table 4: WER for CAT on single layer without the canonical
module

D0 D1 D2 D3 D4 D5 D6 D7 Avg
L1 19.9 20.7 25.2 26.5 27.2 26.9 27.0 26.5 25.0
L2 20.3 20.9 25.5 26.4 27.5 26.8 27.2 26.4 25.1
L3 20.5 21.2 25.6 26.8 27.4 26.8 27.4 26.6 25.3
L4 20.5 21.3 25.7 27.2 27.3 26.9 27.5 26.7 25.4

Table 5: WER for CAT on single layer with the canonical mod-
ule

D0 D1 D2 D3 D4 D5 D6 D7 Avg
L1 19.5 20.3 24.9 26.3 26.8 26.7 26.9 26.3 24.7
L2 19.9 20.5 25.0 26.5 27.0 26.8 27.1 26.5 24.9
L3 20.2 21.1 25.3 26.7 27.2 26.7 27.3 26.5 25.1
L4 20.3 21.2 25.5 27.0 27.1 26.9 27.4 26.6 25.2

The results suggest that CAT for distance adaptation works
better with layers closer to the feature with maximum gain be-
ing observed in the case of L1. Further, as we move towards
higher layers, the variation in input features decreases due to
normalization from previous layers hence resulting into lesser
gains. CAT models with the canonical module perform bet-
ter than their counterpart without the canonical module. This
might be because of the fact that the canonical module learns

better generalization from all the data, while DD module only
learns condition specific transform.

5.3. CAT on Multiple Layers

Similarly CAT can be applied on multiple layers sequentially
starting form the input layer towards the regression layer.
The training procedure starts with taking the canonical model
adding the DD modules to lowermost layer, fine-tuning the DD
module and parameters in alternate epochs followed by fine-
tuning the whole network with small learning rate and repeating
the same procedure for next layer till required. While introduc-
ing CAT at higher layer the lower layer DD modules as well as
the interpolation parameters are used fixed (as from the previ-
ous model) and only the weights and interpolation parameters
of the current layer are updated. Table 6 shows the results of
applying CAT sequentially on all the layers. Each row of result
refers to the range of layers on which the CAT is applied. The

Table 6: WER for CAT on multiple layers with the canonical
module

D0 D1 D2 D3 D4 D5 D6 D7 Avg
L1−2 19.4 20.2 24.8 26.2 26.6 26.5 26.7 26.3 24.6
L1−3 19.3 20.1 24.7 26.2 26.6 26.4 26.7 26.3 24.5
L1−4 19.4 20.2 24.7 26.3 26.6 26.5 26.7 26.3 24.6

results show diminishing gains as we apply CAT to on multi-
ple layers. However, the best result from model L1−3 suggest
that with CAT even with few seen conditions (0 and 4) models
can out perform multi-style model M0246 trained on equal data
from more seen variations (0,2,4,6). Table 7 shows the breakup
of the gain of the best model L1−3 on seen (0 and 4) and un-
seen conditions (1,2,3,5,6,7), suggesting more gain is observed
in the testing conditions same as the training conditions.

Table 7: Average absolute gain in WER for L1−3 with respect
to M04 on seen and unseen distance conditions

Data Seen Unseen Avg
Absolute Gain 1.3 0.7 0.9

6. Conclusions
For realization of hands-free speech recognition, distance adap-
tation is a crucial aspect as evident from the performance degra-
dation in the case of mismatch. The speech corpus variation
presented here might be interesting to explore various adap-
tation techniques specific to varying distance in meeting sce-
nario. Further, the proposed Cluster Adaptive Training seems
promising model space adaptation demonstrating 0.9% absolute
WER improvement on top of the strong canonical model with
dropout, using only few parameters which can be easily esti-
mated during testing. Future work includes applying this tech-
nique in weight space instead of activation space, estimating the
adaptation parameters at frame level and comparing the tech-
nique with other existing adaptation techniques. Also, as CAT
is already applied to speaker adaptation, an interesting study
would be to jointly adapt speaker and distance.
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