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Abstract We present a deep learning approach for the core
digital libraries task of parsing bibliographic reference strings.
We deploy the state-of-the-art Long Short-Term Memory
(LSTM) neural network architecture, a variant of a recur-
rent neural network (RNN) to capture long-range dependen-
cies in reference strings. We explore word embeddings and
character-based word embeddings as an alternative to hand-
crafted features. We incrementally experiment with features,
architectural configurations, and the diversity of the dataset.
Our final model is an LSTM-based architecture, which lay-
ers a linear-chain Conditional Random Field (CRF) over the
LSTM output. In extensive experiments in both English in-
domain (computer science) and out-of-domain (humanities)
test cases, as well as multilingual data, our results show a
significant gain (p < 0.01) over the reported state-of-the-art
CRF-only based parser.
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1 Introduction

Scientific papers cite scholarly work to acknowledge their
past contribution though reference strings. These reference
strings allow a reader to accurately conceptualize the pro-
posed work with respect to prior work. Importantly, it facili-
tates the understanding of the scientific discourse surround-
ing a research topic by identifying key ideas and incremen-
tal advances, when coupled with textual citation analysis.
Impact assessment of both individual articles and scientists,
and larger aggregates, such as scientific fields and academic
institutions are premised on this basic cornerstone task. Ac-
curate extraction and parsing of reference strings to identify
field tags – such as Author, Journal, Title, among others –
is needed by many downstream tasks to avoid propagation
of error. Preprocessing is first performed to obtain reference
strings from the digital Portable Document Format (PDF),
the de facto standard in many fields for transmitting schol-
arly discoveries. In the workflow for this task, the biblio-
graphic section is first extracted from the files, then the ref-
erence strings recovered. Hand-compiled features are gener-
ated from the data, and a trained sequence labeling learned
model is used to induce the labels (fields) per word.

Academic disciplines have adopted different styles of
citing references in their research work. For instance, the
APA format is commonly used in the scientific discipline,
while the MLA format is employed more often in human-
ities. However, even with stylized conventions, authors oc-
casionally apply these styles inconsistently or conflictingly,
even within the scope of a single article, making the task of
reference string parsing challenging. reference strings also
contain mentions of named entities and new vocabulary are
continually introduced, further exacerbating errors for ap-
proaches based on dictionary-based lookup.

Still, the reference strings largely obey conventions that
greatly assist with the parsing task. Fields are mostly con-
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tiguous and separated by delimiters. However, an approach
purely based on splitting the string by delimiter occurrences
fails as the delimiters themselves are used by many fields.
Encoding long-range dependencies such as the position of
the current word with respect to the previous and future se-
quence of entities become important cues to model the task
well. Hence, the parsing task is often modeled as sequence
labeling problem, where each token of the reference string
is labeled as one of the possible fields. Models such as the
Hidden Markov Model (HMM) (Rabiner and Juang, 1986)
and the linear chain Conditional Random Field (CRF) (Laf-
ferty et al, 2001) are widely used for such sequential mod-
eling tasks in natural language processing. HMM and CRF
are both probabilistic graphical models which model long
range dependencies by making a Markovian assumption that
a limited local context is sufficient to make the correct deci-
sion. Many existing techniques for reference string tagging
also use these graphical models. These are numerous exam-
ples of such implementations in both academic and commer-
cial implementations, such as ParsCit (Councill et al, 2008),
CiteSeerX (Giles et al, 1998), and Mendeley1.

2 Related Work

Our work centers on the application of deep learning to the
reference string parsing task. As such, we first review the
prior work on state-of-the-art reference string parsers and
their shortcomings, with particular attention to the ParsCit
model, which we build upon and compare with. Afterwards,
we touch upon recent developments in deep learning and
how the shortcomings of the existing paradigm motivate us
to use it to close the performance gap.

ParsCit (Councill et al, 2008) is an open-source CRF
based implementation which labels (classifies) all words of
a reference string into one of the 13 disjoint fields (classes).
We focus on its primary function as a toolkit for reference
string parsing. In ParsCit, 23 human-engineered features are
extracted, for each word to be classified. These features in-
clude capitalization, punctuation, numeric type, the length
of the word, the location of the word within the reference
string, the presence of substring in the word and a pair of
1, 2, 3 and 4 character n−grams per word, which are the
prefix and suffix portions of the word. All these features are
derivable from the surface reference string. Apart from these
features, ParsCit also uses external knowledge in the form
of six dictionary features for publisher names, place names,
surnames, female and male names, and months. These fea-
tures correspond to four fields namely Author, Editor, Lo-
cation and Date which are similar to named entities. These
hand-engineered features are fed to a CRF model which ex-
tracts their values for the current token to be tagged as well

1 http://www.mendeley.com/

as its neighboring, contextual words. This method incorpo-
rates neighboring signals (in a fixed context window) such
as the occurrences of previous or future punctuation marks,
which we have already mentioned as important in tagging
the current word.

We observe that some of these features – such as the to-
ken position and word length – are derivable from the raw
text itself, and could be hypothetically learned using an un-
supervised approach. Similarly, features which are empiri-
cally decided – such as prefix character n−grams of up to 4
characters – give rise to the need of more powerful models
that can extract these information from raw characters.

We also observe that such relevant reference string parsers
makes extensive use of dictionary-based features. In ParsCit,
these account for a significant fraction (26% of features cor-
relating directly to four classes). Such features are fragile,
being domain and language-specific, and not portable in gen-
eralizing the performance of the model to new, unseen do-
mains and language data. We question whether the prior
work’s performance would generalize well to the presence
of out-of-vocabulary words present in foreign language and
scholarly works in unseen domains. These questions directly
challenge the generalization ability of the prior legacy work.
A robust model should be able to use other unambiguous
signals to decide labels for such words.

Reference string processing has been well-studied by
many research teams. Although the identified shortcomings
belong to few systems, we feel that they are representative
of the field. We find that other recent work also largely goes
in the direction of feature engineering and selection – in-
cluding finding more lucid, hand-crafted features for CRFs
(Romanello et al, 2009; Kern and Klampfl, 2013), (Tkaczyk
et al, 2015) or the use a template-based aligner (Chen et al,
2012) – without addressing the central issue of finding an
optimal representation for the important surface level sig-
nals, in contrast to hand-coding it from human intuition. For
example, CERMINE (Tkaczyk et al, 2015) uses extensive
features fed to CRF, achieving 93.3% F1 (on a smaller set
of 7 classes) over a mixed dataset including the commonly-
studied Cora and PubMed reference strings. Similarly, (Kern
and Klampfl, 2013) uses additional font information. All
these approaches falls under the class of carefully designed
features for a CRF model which we intend to move away
from and introduce a model that is empirically data-driven.

None of these techniques use the vast amount of unla-
beled (or noisy) data available, relying on the supervised
learning paradigm. As the amount of human-annotated ref-
erence strings will always be limited, ideal techniques should
be scalable to take advantage of the vast, unlabeled body of
reference strings. They should also be robust when faced
with limited data. BibPro (Chen et al, 2012) takes a step to-
wards in this direction, utilizing noisy data to train and test
their system, but unfortunately their results do not compare
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with standard datasets; their authors performed evaluation
only on their noisy data set, leaving readers to extrapolate
performance on other data.

A final shortcoming of the field is that the evaluations
have been largely limited to the Cora dataset, which is ho-
mogeneous (English computer science articles) and unrep-
resentative of the multilingual, multidisciplinary scholastic
reality. As the complexity of the problem is introduced by
the variability of the citation styles, we assume a dataset
with citations from various domains and styles should test
the applicability of the proposed technique best. To facili-
tate direct comparison on annotated data that exhibit these
variations, we use ParsCit as our baseline.

Recently there have been many advancements in deep
learning (Schmidhuber, 2015), spearheaded by general- pur-
pose graphics cards which speed up matrix and vector op-
erations. Deep learning based techniques have shown suc-
cess in various fields for different tasks in computer vision,
speech and natural language processing (NLP). Using data
to learn representations and train generic deep neural archi-
tectures by back propagation has been a central paradigm
(Rumelhart et al, 1985) of the field. Such techniques rely
less on handcrafted features, given sufficient data that al-
lows the machine models to identify a good abstract internal
representation of the data (LeCun et al, 2015). With recent
advances in training (Rifai et al, 2011), models that better
leverage structural regularities in the data (Mohamed et al,
2012; Krizhevsky et al, 2012) and a more thorough under-
standing of their internal workings, researchers have started
testing deep neural architectures as alternative to domain-
specific modeling techniques.

In the NLP domain, deep neural network based mod-
els obtained comparable results to state-of-the-art, human-
engineered feature-based models on part-of-speech tagging,
chunking, named entity recognition, and semantic role la-
beling (Collobert et al, 2011). Such tasks are all sequence la-
beling tasks, in which the system assigns labels to variable-
length sequences. Recent research has focused on harder se-
quence modeling tasks such as grammatical error detection,
question answering and machine translation. For NLP tasks,
the advantage of eschewing task-specific features while ob-
taining good results have been often facilitated by pre-trained
word embeddings. Such word embeddings are generic, nu-
meric vector representation of words that capture semantic
and syntactic information through distributed representation
of contexts. These word embeddings can be trained on a
large corpus of unlabeled data. Word2vec (Mikolov et al,
2013b) and GloVe (Pennington et al, 2014) are two such pro-
posed techniques for obtaining task-independent vector rep-
resentations for words using unlabeled text corpora. These
word embeddings are used as a replacement for handcrafted
features and given as input to the neural network model. The

neural network then learns an optimal, task-specific trans-
form from task-independent representations of the words.

When applying deep learning for reference string pars-
ing, we believe training embeddings would be effective, as
one key property of the scenario is that there is a vast amount
of unlabeled citation strings. These can be used to gener-
ate the embeddings, thereby incorporating the knowledge
of citation structures without human intervention. A second
property is that scholarly reference strings contain a high
proportion of named entities and domain-specific words. Due
to the arduousness of obtaining such quality data, the amount
of supervised data is little, and this affects the quality of
learning representations. We believe that learning unsuper-
visedly from large unlabeled data might be generalize better
to unseen cases, even if the labeling is noisy. To effectively
address these two properties, we wish to exploit the unla-
beled data, while limiting the number of parameters of the
learned model to achieve good generalization performance,
avoiding overfitting.

3 Formulation

The task of reference string parsing refers to transforming
reference strings into a machine-readable form, e.g. BibTeX
format. One possible solution is to apply sequence labeling
to the string’s sequence of tokens. We now formally describe
the reference string parsing as a sequence labeling prob-
lem, and then illustrate the background of sequence labeling
methods by reviewing the fundamental models of HMMs,
CRFs and the associated deep learning based approaches.

Definition. Given an input sequence, X = (x1, ..., xt,

..., xT ) and possible output (tag) sequences Y = (y1, ..., yt, ...,

yT ), the task is to identify corresponding optimal output se-
quence, Ŷ = (ŷ1, ..., ŷt, ..., ŷT ).

Here, xt represent the input and yt represents a variable
which can take any of the N possible output labels at time
step t respectively. During training we learn use the pair of
input-optimal output sequences to learn such a function. A
reasonable output can be obtained with a Markov assump-
tion over the sequences, then learning to optimize an objec-
tive function over Y and/or X . We discuss these methods
and corresponding models below in detail.

3.1 Hidden Markov Models

A basic approach is to use a generative model such as a Hid-
den Markov Model (HMM). The HMM can be used to ob-
tain the optimal sequence tag by training to maximize the
joint log probability as:

Ŷ = argmax log p(X,Y ) (1)



4 Animesh Prasad et al.

When a generative model like an HMM is used for mod-
eling the joint probability, Viterbi decoding is applied dur-
ing inference to find the conditional likelihood and hence
the most optimal sequence. This difference in training and
testing objectives and the potential occurrence of label bias
resulting from such maximum likelihood models has led to
their replacement by CRFs in many practical implementa-
tions.

3.2 Conditional Random Fields

The conditional random field (CRF) model maximizes the
conditional probability of the output labels given the ob-
served data:

Ŷ = argmax log p(Y |X) (2)

Here, the conditional probability, p(Y |X) for the sequence
is determined by calculating the product of potential func-
tion (φ) at each time step as:

p(Y |X) =

∏N
i=1 φ(yi−1, yi, X)∑

Y ∈Y ∗
∏N

i=1 φ(y
′
i−1, y

′
i, X)

(3)

where N is the maximum number of classes and Y ∗ is set
of all possible label assignments for a given input sequence.
The prediction for a string using this model can be achieved
by the Forward–Backward algorithm. Though HMM and
CRF form a generative–discriminative model pair, CRFs are
a better substitute for tasks with less supervision and high
class imbalance, as the CRF model invests all of its mod-
eling power to discriminate among classes, whereas HMMs
divide their power between class discrimination and genera-
tion.

3.3 Deep Learning based Sequence Modeling

A simple feedforward deep neural network with layers i = 1

to L is a sequence of operations on input features resulting
in non-linear transformations of the input features. For an
input feature vector x, layer i performs the operation as:

hi(x) = f
(
W ih̃i(x) + bi

)
(4)

where,

h̃i(x) =

{
x, if i = 1

hi−1(x), otherwise

f(x) =


exp(xk)

dim(x)∑
j=0

exp(xj)

, if i = L

tanh(x) = 2σ(2x)− 1 = exk − e−xk

exk + e−xk
, otherwise

The tanh function introduces non-linearity on the affine trans-
form of the hidden layer. The nonlinear operation performed
in the output layer (i = L) is softmaxwhich enables multi-
class classification. This is due to the fact that the softmax
output can be treated as probability distribution over the tar-
get classes (i.e., the normalized class prediction from a sim-
ple feedforward network can be treated as the conditional
probability p(y(n)|x) for classes n = 1 to N ). The final
layer L uses a softmax function to implement the multiclass
classification, while the other layers add flexibility in the
modeling by passing their input through a non-linear func-
tion (feedforward layers).

One notable shortcoming of the standard feedforward
model is that it cannot effectively encode temporal depen-
dencies in generating the probability distribution. This im-
plies that the conditional probabilities output by the model
are independent of any previously seen and future samples.
This shortcoming makes the standard model impratical for
sequence labeling task such as reference string parsing that
observes a sequence of tokens (a temporal series).

To address this problem, hybrid techniques have been
introduced where the output of the neural model is fed to a
CRF or HMM layer, in a stacked fashion. The CRF or HMM
then uses the output probability of the neural model as an
abstract feature and does the actual classification based on
its own objective function.

However, native solutions in the neural modeling paradigm
also address these same issues. Neural networks architec-
tures such as recurrent neural networks (RNNs) take the
previous and/or future (time steps) predictions into account.
The power of RNNs is attributed to its potential to remember
output history by connections to previous time steps and use
such historical evidence to make decision for current time
step as follows:

h(xt) = tanh

(
Wxxt +Whh(xt−1) + b

)
(5)

The training criterion (loss function) for such models is
usually Cross Entropy (CE), defined as:

CE = − 1

T

∑
t

∑
n

ŷt(n) log(yt(n)) (6)

The model minimizesCE by attempting to classify each
of the xt correctly, rather than trying to learn the actual dis-
tribution of tags over the sequence, as with in the case of a
HMM or CRF.

These models can theoretically reach beyond the Markov
assumption and can be used to predict each label without
joint decoding. However, in practice, learning such long-
ranged dependencies require proportionally more training
samples, which is infeasible for our task. As a compromise,
we can compose a CRF or an HMM layer on top of the
RNN output to re-impose the Markov assumption, making
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it easier for the network to learn with fewer labeled data.
Though for stacked models, the overall performance is upper
bounded by the performance of the final layer; in practice,
the CRF layer still helps. This happens because signals from
outputs afar percolate into the Markov blanket as features,
enhancing prediction. However, RNNs has their own prac-
tical shortcomings (i.e., extreme gradients) which makes it
difficult to train reliably. For overcoming this issue, we em-
ploy an LSTM, a variant of RNN, which we discuss next.

4 Method

We now discuss the salient points of our proposed technique.
We describe the chosen deep learning architecture, the pur-
pose of each model component and the input features to the
model.

4.1 Model: Long Short-Term Memory

We explained that long-range dependencies exist in refer-
ence strings and need to be appropriately captured. We uti-
lize Long Short-Term Memory (LSTM) networks to do this.

From Eq. (5) we see that the recursive nature of an RNN
allows the capture and modeling of information from previ-
ous time steps. While theoretically RNNs can capture histor-
ical evidence going back to the start of the sequence (i.e., the
first input), in practice, RNNs capture limited recent history,
failing to fully exploit the benefit of information from previ-
ous time steps in long sequences. This is due to the problem
of vanishing gradients (Bengio et al, 1994), in which the
gradient decreases exponentially between time steps, which
leads to the problem of ineffective error propagation to pre-
vious time steps (Pascanu et al, 2013). This results in long
training times and its difficulty in assigning sufficient con-
tribution to time steps far back in history. The problem of
vanishing gradients can be solved by incorporating a mem-
ory cell (a temporary store for history; see Hochreiter and
Schmidhuber, 1997) into the RNN. Such networks are termed
long short-term memory models (LSTMs). When paired with
the appropriate gates, a basic memory cell can be trained to
retain relevant information from the input (Gers et al, 2000).
Fig. 1 shows the schematic diagram of an LSTM cell with
its flow of vectors and associated operations in Eq. (7).

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf )

c̃t = tanh(Wxcxt +Whcht−1 + bc)

ct = ft � ct−1 + it � c̃t

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo)

ht = ot � tanh (ct)

(7)

Fig. 1 Basic LSTM cell operations at time step t.

Here, the input gate (it) and the forget gate (ft) vectors
are calculated based on the current input (xt) and the out-
put of the previous time step (ht−1). Based on these gates,
the memory cell (c) is updated by multiplying the input
gate vector with the potential memory content (c̃t) and for-
get gate vector with the previous memory content (ct−1),
and then adds the two resultant vectors together. The out-
put gate vector (ot) is calculated by using the input, new
updated memory (ct) and previous time step’s output. Fol-
lowing this, the current time step output (ht) is calculated.

4.1.1 Bidirectional LSTM (BLSTM)

LSTM networks can encode useful past information, but not
future information. Often, successive words provide impor-
tant information regarding the sequence, particularly true in
our task. For example, Volume might only come after Book-
title; and conversely, if the next label is Volume, it is highly
likely that the previous label should be Booktitle. To cap-
ture information from future words, a Bidirectional LSTM
(BLSTM) contains two parallel LSTM networks that run in
opposing directions with respect to time steps. The LSTM
that moves backward over the words can be said to encode
information about future words. These two LSTMs are trained
independently and can be later merged via a single feed for-
ward layer.

4.1.2 Stacking CRF and BLSTM

The LSTM model can be used to model sequences without
the need for joint decoding (Viterbi or Forward–Backward
decoding used by HMM or CRF). Learning such param-
eters without priors or regularization can lead to unstable
results, especially given little training data. To lessen these
problems, the LSTM output can be directly fed into a CRF
to maximize the conditional probability, according to the
CRF objective function, re-applying a Markovian assump-
tion. This is achieved by taking the output of the BLSTM as
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the input to the CRF. Feedforward layers can optionally be
inserted between the BLSTM and CRF layer.

4.2 Features

We eschew domain- and language- dependent features to
avoid fragility in our model, instead choosing to capture
only fundamental features based on characters and domain-
general word information.

To capture semantic and syntactic word information, we
employ two complementary means to generate word repre-
sentation:

1. Word Embeddings, also known as distributed word
representations, are used as one of the word-level features in
our model. We use word2vec for creating distributed word
representation. Word2vec can be configured to use either
Skip-Gram (SG) or Continuous Bag of Words (CBOW), along
with negative sampling and hierarchical softmax to train word
vectors. Fig. 2 (Mikolov et al, 2013a) shows the CBOW and
SG configurations. In CBOW, given an input context, the
model tries to predict the word; while in SG, the context is
predicted, given an input word over a fixed vocabulary V .

Fig. 2 The word2vec model in CBOW and SG configurations.

The objective for both SG and CBOW models is to max-
imize the average log probability. Eqs. (8) and (9) give the
training objectives of SG and CBOW, respectively, for a
given context c.

argmax

( T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j |wt)

)
(8)

argmax

( T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt|wt+j)

)
(9)

The conditional probability in these training objectives
captures the co-occurrence of the words and uses that to

maximize the log probability. Once the model is trained, the
projection matrix, shown in Fig. 2 as W, is taken as the re-
sultant word embedding.

The training process is shown below. The projection ma-
trix W (right hand side) converts the traditional, one-hot
representation of the word to a vector (middle column vec-
tor). In other words, each row of the W matrix corresponds
to the word vector of a specific word in the fixed, indexed
vocabulary. Hence adding this as the first layer (referred to
as the embedding layer) is equivalent to a lookup table.


x11 x12 . . . x1n

x21 . . . . . .
...

... . . . . . .
...

xd1 . . . . . . x|V |n





0
...
0

1

0
...
0



T

=
[
xk1 xk2 . . . xkn

]
= W(k)(10)

Word embeddings are sometimes termed “pre-trained”,
as they are trained offline on unlabeled text, independent of
the task at hand. Pre-learned embeddings trained on billions
of words are available online.

2. Character-based Word Embeddings. Characters con-
tain important information regarding morphology and word
formation, relevant to many tasks. For reference string pars-
ing, the presence and identity of punctation marks – such as
commas, hyphens and numbers – can heavily influence the
class of the token. Other classes of characters can also yield
key evidence. For instance, a four-letter number is likely
to be a Date and a hyphenated numeric field is likely to
be Pages. To capture such character-level information, we
use character-based word embeddings, where the charac-
ters of a word are individually represented as numeric vec-
tors that have been optimized by a trained long short-term
memory (LSTM) neural network. While the vectors start
randomly initialized, the post-trained resultant embeddings
encode meaningful patterns across words. For example, in
part-of-speech tagging, character-based embeddings can learn
similar vector representations for words ending in “-ly” that
are potential adverbs.

We use a bidirectional LSTM to create character-based
word embeddings. Formally, for a word w = c1, .., ci, .., cC ,
the vector representation xci

of each character is passed se-
quentially through the LSTM cell, which performs a series
of vector and matrix operations resulting in the output vec-
tor (Exc1 ,...,xci

). The vector represents all the characters fed
to the network up to i. Similarly, character vectors are fed in
reverse order from T to 1 in another independent network.
The resultant final vectors from both independent LSTMs
are concatenated to form an effective character-based word
embedding [Exc1 ,...,xcT

,E′xcT
,...,xc1

].
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The resultant character-based word embedding for w is
then concatenated with the respective word embedding from
the word embeddings dictionary obtained from word2vec
(projection matrix W).

Fig. 3 An unrolled representation of bidirectional LSTM generating
character-based word embedding and concatenation with the word em-
beddings obtained from word2vec.

The example in Fig. 3 shows the component used to
generate the character-based word embeddings. This part
of network is trained together with the other parts by the
backpropagation algorithm using the common error func-
tion. It shows an unrolled (i.e., multiple time step) bidirec-
tional LSTM performing the described operations on the
word “Proc” (often short for “Proceedings”). The output of
the bidirectional LSTM (lableled CEProc) is concatenated
with the word embedding obtained from the projection ma-
trix W (labeled as WEProc).

If required, multiple word embeddings can be trained by
using different corpora. Using multiple word embeddings
trained on different sources improves the ability of the sys-
tem by accounting for co-occurrences of words among dif-
ferent domains (i.e., multiple senses). We refer to this as
word vector augmentation, explored in more detail in Sec-
tion 5.1.2.

5 Experiments

We first describe the experimental setup common to all our
main experiments, then describe the ParsCit baseline that we
compare against. We then describe the experimental results
for sensitivity to word embeddings, various components of
LSTM model selection, selection and robustness across do-
mains and languages.

Setup2. We use word embeddings pre-trained by Google
using the word2vec toolkit that pre-trained over a corpus of
100B words from Google News. This model produces 300-
dimensional vectors for 3M unique words and phrases. We
also train in-domain word embeddings using the word2vec
toolkit on 4.3M reference strings extracted from the pro-
ceedings of the Association of Computing Machinery (ACM)’s
Digital Library, provided by the ACM as part of a research
collaboration. Numbers are changed to a canonical, numeric
value by replacing all the numeric characters with zeros when
applying the trained model to unseen, test references. This
helps in dealing with the data sparsity of the numeric space.
During testing, a similar approach is applied to capitalized
words; they are checked against any available lowercase form
as needed. However, to maintain the casing information, a
separate capitalization feature is also fed to network. The
trained embedding vectors for 440K unique words have 200
dimensions each. The training for this in-domain word em-
bedding is done using the CBOW configuration. To combat
sparsity and noise, we use a frequency filter as in standard
practice, learning embeddings for words which occur at least
5 times in the corpus. For each word, we set the number
of negative-sampled words to 25. The vector representation
achieved shows high similarity and closer vector representa-
tion for noisy variants of the same words. For instance, the
words closest to “proceedings” are “proc.”, “Proc”, “Pro-
ceeding”, based on cosine similarity. Words such as “pro-
ceedings” and “conference” are also highly similar, as com-
pared to similarly spelled but semantically distinct word pairs
such as to same for “proceedings” and “preceding”.

Our model configurations are identical to those reported
implementation of LSTM for named-entity recognition (Lam-
ple et al, 2016). The implementation uses the Python-based
deep learning library, Theano (Bergstra et al, 2010). All of
the models are trained and tested on an NVIDIA GeForce
GTX Titan X. The setup requires a few minutes of training,
but inference is as fast as the CRF-only models taking only
few seconds. The LSTM is trained on per-sample stochas-
tic gradient descent, with dropout regularization, using min-
imum cross entropy criteria (Bengio, 2009) for parameter
learning. For the CRF setup, we use complete sequence (as
opposed to token) error, incorporating transition errors. The
learning rate used is 0.001. Parameters are initialized ran-
domly with a uniform distribution between –1 and 1. All
out-of-vocabulary (OOV) words – i.e., words which are not
present in the pre-trained word embeddings – are initial-
ized to a single, randomly chosen uniform distribution be-
tween –1 and 1. In our experiments, we found that 8–10%
of words are OOV, and thus are assigned the same random
word embedding. Character embeddings are similarly ini-
tialized: each unique character is initialized with a unique

2 Code and data available at https://github.com/
WING-NUS/Neural-ParsCit.



8 Animesh Prasad et al.

random vector, where the dimension of the character em-
bedding vector is set to 25. The characters are padded with
dummy characters to make the sequences of constant length
which is maximum of all words in the particular reference
string. For citation sequences, no padding is done and train-
ing is done sample by sample to accommodate for variable-
sized sequence.

We set the dimension of BLSTM layer (which produces
the character based word representation) to 25 and the di-
mension of the pre-final BLSTM layer (which runs over the
concatenated word embeddings) to 100. To be clear, the di-
mension of a layer refers to the size of the output of the layer
(ht). The values of the different hyper-parameters discussed
above are selected based on general guidelines and prior ex-
perience; we did not perform an exhaustive grid search for
optimal values.

Fig. 4 An unrolled representation of our final model comprising of
BLSTM using word embedding features followed by a feedforward
layer and CRF.

Fig. 4 shows an unrolled representation of our complete
CRF–BLSTM network which runs over the concatenated
word vector (concatenated word embedding and character-
based word embedding). The LSTM output are fed to the
feedforward layer, then through a softmax to make the mul-
ticlass decision. As we will show in our experimentation, the
LSTM shows inferior performance by itself, but when used
as input to a CRF (layer), improves the CRF performance,
resulting in state-of-the-art performance. Fig. 4 shows the
workflow for a part of the reference string “In Proc of”.
In deciding the class for “Proc”, first the output of Fig. 3
is fed to the input of both forward and backward LSTMs.
The forward LSTM uses the history accumulated from start
of the string until “In” to produce the output vector. Simi-
larly, the backward LSTM does the same using the history
accumulated from the end of the string until “of” to produce
the output vector. These two output vectors are concatenated
and passed through a feedforward layer utilizing a tanh ac-
tivation function. Finally, the output of the feedforward layer

is passed to a softmax or CRF layer, yielding the final classi-
fication. For the standard LSTM model, the output is a prob-
ability distribution, so word classes are directly predicted as
output. For the variants where we stack the CRF model as
the final layer, the classification is delayed; the best assign-
ment is computed for the whole sequence as part of the CRF
operation instead of individual assignments.

All proposed neural models perform I/O operations in
the same fashion as the ParsCit by using the same APIs to
read from tokenizer and feature extractor and to write to
same output file. This makes integration or even complete
migration to neural models easy. The only significant bar-
rier to adoption constraint over the baseline ParsCit is its
in-memory requirements for loading the word embeddings.

We detail our experimentation, beginning with simpler
models and datasets, subsequently increasing the complex-
ity, so as to examine the effects of scaling.

5.1 Model and Feature Selection

We examine the various components of the models, and do
additive studies on the performance of the model as we in-
troduce those components. All results presented are average
performance, using 10-fold cross validation, splitting 80%
for train, and 10% for validation and test, respectively. The
results are reported on the test set and validation set is used
for model selection, as is standard. We use the standard Cora
dataset, which has 500 human annotated reference strings
sampled from various sub-domains of computer science ar-
ticles available in English.

5.1.1 LSTM trained with Word Embeddings

Table 1 shows the result of the LSTM configuration trained
with embeddings trained on the ACM proceedings refer-
ences using word2vec.

This baseline model serves as a reference point for our
experimentation. In particular, note the 0.0 F1 for classes
Editor and Note, highlighting the skewed nature of the dataset.
Under this model, these classes have insufficient examples
for model training.

5.1.2 Effect of Augmented Word Embeddings

Table 2 shows the result of the LSTM configuration built in-
crementally from the model described in Section 5.1.1; i.e.,
in addition to word embeddings trained on ACM proceed-
ings reference, pre-trained embeddings trained on Google
News (available online3) augmented the trained word em-
bedding.

3 https://code.google.com/archive/p/word2vec/
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Class Precision Recall F1

Author 97.24 87.85 92.31
Booktitle 86.99 72.31 78.97
Date 92.65 80.19 85.97
Editor 0.0 0.0 0.0
Institution 34.12 62.05 44.03
Journal 31.8 74.36 44.55
Location 18.18 67.66 28.65
Note 0.0 0.0 0.0
Pages 83.63 68.17 75.11
Publisher 23.89 92.67 37.98
Tech 8.12 40.0 13.51
Title 94.32 82.08 87.78
Volume 85.95 82.41 84.14
Macro Average — — 51.77
Micro Average — — 80.39

Table 1 LSTM prediction performance, trained using WE trained on
ACM proceedings over the Cora reference string dataset.

Class Precision Recall F1

Author 99.05 91.03 94.87
Booktitle 88.9 81.99 85.31
Date 92.18 85.37 88.64
Editor 1.42 30.0 2.72
Institution 74.75 63.53 68.68
Journal 68.59 72.63 70.55
Location 43.44 63.06 51.45
Note 0.0 0.0 0.0
Pages 81.38 81.48 81.43
Publisher 30.94 83.1 45.09
Tech 13.83 57.5 22.29
Title 95.34 87.97 91.51
Volume 84.32 82.73 83.52
Macro Average — — 60.47
Micro Average — — 85.11

Table 2 LSTM performance over Cora, trained using WE trained
on ACM proceedings augmented with Google News WE. Compare
against figures in Table 1.

A comparison between Tables 1 and 2 shows that using
embeddings originating from multiple domains increases per-
formance on almost all classes. In particular, the model gives
comparatively better results on classes such as Institution,
Journal and Location, where the entities are also used in
day-to-day English. This makes sense as the word senses
for such words are well captured as the embedding space is
generated from Google News.

5.1.3 Effect of Character based Word Embeddings

Table 3 shows the result when the previous LSTM config-
uration from Section 5.1.2 additionally appends character-
based word embeddings.

Though the results of adding this additional feature to
the model does not yield additional gain on F1, an analysis
of results yields some insight on the source of positive con-
tribution. As a case in point, the Journal class posts a large

Class Precision Recall F1

Author 98.76 90.9 94.67
Booktitle 88.57 82.69 85.53
Date 90.97 85.03 87.9
Editor 2.65 40.0 4.97
Institution 77.17 62.42 69.01
Journal 76.62 74.53 75.56
Location 36.3 61.63 45.69
Note 0.0 0.0 0.0
Pages 81.03 76.73 78.82
Publisher 27.06 77.07 40.06
Tech 10.58 52.14 17.59
Title 95.21 88.58 91.77
Volume 84.0 82.47 83.23
Macro Average — — 59.6
Micro Average — — 85.11

Table 3 LSTM performance over Cora, trained using both Augmented
and Character-based WEs. Compare against figures in Tables 2 and 1.

Class Precision Recall F1

Author 98.57 91.06 94.66
Booktitle 89.08 87.15 88.1
Date 93.43 92.09 92.76
Editor 4.3 30.0 7.52
Institution 81.91 64.06 71.89
Journal 85.64 81.26 83.39
Location 65.75 73.02 69.19
Note 0.0 0.0 0.0
Pages 91.58 90.57 91.07
Publisher 56.76 78.84 66.0
Tech 29.81 79.21 43.32
Title 96.64 92.07 94.3
Volume 92.32 85.56 88.82
Macro Average — — 68.54
Micro Average — — 88.43

Table 4 Bidirectional LSTM performance over Cora, trained using
Augmented and Character-based WE. Compare against Table 3.

5 F1 point gain. Inspection of the output indicates that the
model that appends the character embedding makes signifi-
cantly less mistakes for patterns involving complex charac-
ter sequences like “(NIPS*00)”,“IEEE” and “IEEE/ACM”.
But as a consequence, the model makes mistakes in other
classes, mostly due to the additional modeling effort for such
prefixes and suffixes. For example, “MIT/LCS/TR-000” is
classified as Institution, dis-preferred to the correct Tech class.
This instance was classified correctly by the word based
LSTM not using character based word embedding; the char-
acter enhanced LSTM likely overfit, seeing the prefix “MIT”.

5.1.4 Effect of Bidirectional LSTM

Table 4 shows the result when we add bidirectionality into
the LSTM framework onto the previous experimental setup.
Bidirectionality is applied to both word and character LSTM
sequences.
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Class Precision Recall F1

Author 99.72 98.48 99.1
Booktitle 93.85 95.79 94.81
Date 99.37 98.5 98.93
Editor 89.28 91.76 90.51
Institution 84.8 89.12 86.91
Journal 94.06 91.3 92.66
Location 91.4 90.26 90.82
Note 48.17 68.42 56.54
Pages 98.34 97.74 98.04
Publisher 91.64 94.96 93.27
Tech 83.89 80.97 82.41
Title 98.15 96.76 97.45
Volume 94.31 94.41 94.36
Macro Average — — 90.45
Micro Average — — 95.68

Table 5 CRF–BLSTM performance over Cora, trained using Aug-
mented WE and Character based WE. Compare against Table 4.

The results in Table 4 affirms prior work that using future
information in the LSTM framework indeed improves per-
formance. Contrasting the model’s predictions with the pre-
vious ones, this effect is particularly pronounced – including
parenthetical digit sequences such as “(0000)” and “0(00)”
in Booktitle and Title, when they should be attributed to Vol-
ume; and confusing “(0000)” between Date and Volume –
among others. These errors can be classified as cases where
the decision boundaries occurs after long, consecutive re-
peating labels occur in the forward direction – such as Title
and Booktitle – which can be difficult to model in the for-
ward direction. These are easily tracked in the reverse direc-
tion, as the long-range forward dependencies become short
dependencies in reverse.

5.1.5 Effect of the CRF

Table 5 shows the result of stacking a final CRF layer (CRF–
BLSTM), over the previous scenario.

The resultant CRF–BLSTM trained using augmented and
character-based embeddings categorically shows that keep-
ing a Markovian blanket over non-Markovian feature inter-
action helps the classification with the small amount of data
and skew classes. The CRF layer enables the model to iden-
tify Notes, and differentiate Editors from Authors, dramati-
cally boosting the overall F1.

In our experiments we decrease the number of parame-
ters in the basic LSTM (having 110K parameters, 95.68 mi-
cro F1) to No Peephole (NP–LSTM having 85K parameters,
96.06 micro F1) and Coupled Input Forget Gate (CIFG–
LSTM having 80K parameters, 96.18 micro F1) variants
(Greff et al, 2015). We use CIFG–LSTM variant in further
experiments. The smaller number of parameters lessens the
memory footprint of the model and reduces the sparsity and
data requirements when training the model.

5.2 Comparison across different datasets

Having established a competitive deep learning architecture
— CRF–BLSTM (also CIFG–LSTM) using augmented and
character-based WE — for reference string parsing, we ex-
amine its performance against the baseline ParsCit model.
For ease of reference, we term this final system as “Neural
ParsCit”, a neuralized reference string parser, that accom-
plishes same scope of work as the original ParsCit project.
To better assess its real-world performance, it is important to
validate performance over a wider variety of data, not lim-
ited to just the Cora dataset. All results presented are av-
erage 10-fold cross validation performance for both mod-
els trained on same splits. For each experiment the dataset
is randomly split in 10 folds where 90% of data is used as
train, and 10% for test per fold.

5.2.1 Comparison on Cora

Neural ParsCit outperforms ParsCit with statistical signifi-
cance, reducing error by over 20% (11.17% reduced to 8.63%)
in macro-averaged and 10% (4.34% reduced to 3.94%) in
micro-averaged performance. The gain comes from the ma-
jor confusion classes of Booktitle and Title. Table 7 shows
the difference of all errors types for ParsCit and Neural ParsCit
where only one model predicts the correct class. Each en-
try in the table shows relative confusion for the particular
model. Most of the error from false positives on prominent,
long range entities i.e. Booktitle and Title has been removed
by Neural ParsCit. Interestingly, the confusion between Book-
title and Title is slightly increased for the neural model, which
is indicative of strong semantic closeness of these classes.

5.2.2 Cross Domain Comparison

In addition to the collection of 500 reference strings from
Cora, 300 reference strings from FLUX-CiM, 75 reference
strings from ICONIP – all largely from the hard sciences in
English, it includes 178 reference strings from the English
humanities dataset.

Results from the cross domain comparison show con-
flicting performance against the ParsCit baseline; a 20% gain
in error reduction on macro-averaged, but a 1% loss in micro-
averaged performance. Further investigating the errors in-
troduced by the neural model, performance degradation was
primarily due to the increased confusion between Bookti-
tle and Title (Table 9). We found that most error instances
had patterns or repeating structures. One such example is
the reference string “Barklund, J., Costantini, S., Dell’Acqua, P.
and Lanzarone, G. A., Integrating Reflection into SLD-Resolution, in:
A. Momigliano and M. Ornaghi (eds.), Proc. Post-Conf. Ws. on Proof-
Theoretical Extensions of Logic Programming, 1994”. Due to fact
that Editor are semantically very close to Authors, the oc-
currence of Booktitle after such similar signals may have
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Model ParsCit Neural ParsCit
Class Precision Recall F1 Precision Recall F1

Author 99.45 98.22 98.83 99.48 98.37 98.92
Booktitle 96.14 92.56 94.32 94.09 93.51 93.8
Date 97.64 99.66 98.64 99.22 98.54 98.88
Editor 75.68 85.56 80.32 84.51 96.37 90.05
Institution 84.47 90.79 87.52 90.69 90.76 90.73
Journal 91.6 92.96 92.28 92.68 92.24 92.46
Location 86.96 90.89 88.88 90.78 91.85 91.31
Note 49.62 72.49 58.91 58.49 70.38 63.89
Pages 97.85 97.88 97.86 98.36 97.9 98.13
Publisher 76.17 88.38 81.82 92.05 92.53 92.29
Tech 73.33 94.6 82.61 84.97 83.7 84.33
Title 98.97 96.43 97.68 98.02 98.09 98.06
Volume 95.68 94.66 95.17 95.73 94.19 94.95
Macro Average — — 88.83 — — 91.37
Micro Average — — 95.66 — — 96.06*

Table 6 ParsCit versus Neural ParsCit on Cora, where ‘*’ indicate significant improvements at the p < 0.05 on one-tail paired Student’s t-test.

author booktitle date editor institution journal location note pages publisher tech title volume
author — 0 0 0 0 0 -1 0 0 0 0 10 0

booktitle 0 — -2 0 0 -6 0 0 -2 -3 0 -12 -3
date 0 2 — 1 0 1 6 0 1 0 0 0 1

editor 2 21 0 — 0 0 0 0 0 0 0 0 0
institution 2 11 0 0 — 0 -1 0 0 2 -2 14 0

journal 0 0 0 0 -1 — -1 0 0 0 -2 9 1
location 0 7 -1 0 -3 0 — 0 0 0 -1 0 0

note 0 8 0 2 0 0 -2 — -1 1 -2 3 -1
pages 0 0 -1 0 0 1 -1 0 — 1 0 2 -3

publisher 0 8 0 0 1 0 7 1 0 — 0 13 1
tech 0 0 0 0 3 0 0 0 1 2 — 12 0
title -10 -9 0 0 -2 -3 -1 -3 0 2 -9 — 0

volume 0 6 -3 0 0 0 0 0 -1 0 0 3 —

Table 7 Relative confusion for ParsCit versus Neural ParsCit on Cora. Rows represent ground truth classes; columns, predicted classes. The
values represents the difference of confusion (PredictParsCit − PredictNeuralParsCit) aggregated over samples where exactly one of the
model predicts the class correctly. Negative entries indicates wins for Neural ParsCit.

Model ParsCit Neural ParsCit
Class Precision Recall F1 Precision Recall F1

Author 98.83 98.43 98.63 98.62 98.48 98.55
Booktitle 95.34 94.4 94.87 93.15 95.78 94.44
Date 98.47 98.41 98.44 99.06 97.85 98.45
Editor 81.43 89.92 85.47 84.08 88.29 86.13
Institution 81.43 95.81 88.04 90.61 87.66 89.11
Journal 91.48 93.33 92.4 90.22 90.98 90.6
Location 93.24 91.88 92.55 93.63 93.47 93.55
Note 44.8 84.36 58.52 69.84 84.94 76.65
Pages 98.93 98.4 98.66 98.93 99.15 99.04
Publisher 81.24 92.15 86.35 91.87 93.0 92.43
Tech 65.12 95.3 77.37 84.45 87.66 86.03
Title 98.36 95.76 97.05 97.89 96.24 97.06
Volume 95.75 94.21 94.97 94.75 94.36 94.55
Macro Average — — 89.49 — — 92.05
Micro Average — — 95.85 — — 95.79

Table 8 ParsCit and Neural ParsCit performance on the Cross Domain dataset.
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tipped the model to tag Title, based on training showing Ti-
tle is often tagged after tokens semantically close to per-
son names. As Booktitle also has similar semantics to Title
– “Proof-Theoretical Extensions of Logic Programming”, compared
with “In Proceedings of the SIGPLAN ’90 Conference on Program
Language Design and Implementation” – further exacerbates the
confusion.

Such pattern-based errors can be mitigated in produc-
tion systems by simply adding error-specific postprocessing
to the output; or by selectively adding more training samples
with such variations. We show in the following section, that
in the confines of our dataset, since most of such instances
come from the English humanities dataset (approximately
15 instances), when we add multilingual humanities refer-
ence strings to the dataset, the number of such instances in-
creases and as a result, the model does correct such mistakes
on its own.

5.2.3 Comparison on Multilingual Data

We also compared both systems on multilingual data. In ad-
dition to the English reference strings from the cross-domain
dataset, we added 77 instances of Italian and 67 instances of
French and German reference strings.

In our neural model, strings in foreign languages are
translated to English using Google Translate. The training
and testing is done on this canonical dataset containing only-
English reference strings. After the classes are predicted on
the translated string, we map back the predicted class to the
original foreign language. This is done by mapping the sub-
strings using the presence of delimiters and assigning the
class values to the substring. This method assumes that the
translation process maintains the order among the classes
within the reference string.

The results show that both models make similar mistakes
on foreign words, implying that neither approach works op-
timally for multilingual datasets. From Table 11, one im-
portant observation is that confusion between Booktitle and
Title is reduced by the current model. This implies as Neu-
ral ParsCit does well on the mixed dataset, where no post-
processing was applied (Table 9), which is also part of this
test setting, covering the margin from –67 to 39. Further
analysis shows that the poor results of ParsCit was due to
its fundamental limitation of using character n−grams as
features. Character n−grams are highly dependent on lan-
guage. In absence of semantic knowledge, the uniform treat-
ment of prefixes caused the baseline CRF-based model to
fail. A representative error example (made by the ParsCit
baseline and not by Neural ParsCit) – “A. Camerotto, ‘Sto-
rie cretesi, ovvero altre storie: tra Idomeneus e i suoi ‘parenti’, in
Tradizioni locali e generi letterari nella Grecia arcaica: epos minore,
lirica ed elegia, storiografia, Atti del Convegno di Studi (Venezia, 21-
22 settembre 2006), a c. di E. Cingano, Roma-Pisa 2008 [c.d.s.]”.

Here “in Tradizioni locali e generi letterari nella Grecia arcaica:
epos minore, lirica ed elegia, storiografia, Atti del Convegno di Studi”
Booktitle is continued to be reported as Title since no obvi-
ous character n−gram signals are displayed. Unfortunately,
such errors cannot be processed during post processing as
identifying boundary in such cases is difficult. In contrast,
the errors made by Neural ParsCit seem more semantically
plausible from our point of view — for example, predicting
“High” and “School” as Institution instead of Title in cases
where those tokens should have been correctly tagged as Ti-
tle.

6 Discussion

We now discuss particular issues that connect our claims
against the empirical results.

Issue 1: How well does the neural model handle long
range dependencies? We find that longer dependencies that
occur towards the end of citation strings are the single largest
source of error – commonly instances of Title and Bookti-
tle. For the results reported in Tables 6 and 7, we analyze
the location of occurrence of all Booktitle incorrectly iden-
tified by both the models, on average, is 16 words from the
beginning, with a standard deviation of 8. In comparison,
for correct instances, the average location is just 10 with an
s.d. of 5 — much less. The spans of the differential per-
formance validates our claim that the Neural ParsCit works
better on such longer-range dependencies. Separately, our
neural model learns to identify long-range dependencies for
classes which are semantically distinct from each other Pub-
lisher, Author and Title. This niche ability gives it the per-
formance edge over the CRF only baseline which not use
any semantic representation of words.

Issue 2: How do word embeddings perform as fea-
tures? The word embeddings trained by using word2vec
do capture useful semantics of the words within reference
strings, purely based on their co-occurrence. The embedding
algorithms do manage to group words belonging to same
class together, separating them in the high-dimensional vec-
tor space. For example, words that indicate (conference) pub-
lication venues, such as “COLING”, “MobiSys” and “IN-
TERSPEECH”, which occur in similar context windows of
the Journal, Booktitle and Publisher fields are indeed brought
closer in their vector representation by the unsupervised al-
gorithm. Our inspection of the unsupervised, learned em-
beddings suggests that they are more appropriate than the
former, human-engineered features in the baseline ParsCit
system, and are more robust. This claim is further validated
backed by the results on CRF–BLSTM model (Table 6),
which uses word embeddings and gives an average micro F1

of 95.9% as compared to ParsCit, which uses handcrafted
features and gives a micro F1 of 95.7%. For most of the
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author booktitle date editor institution journal location note pages publisher tech title volume
author — 0 0 -18 0 0 -1 0 0 -1 0 10 0

booktitle 0 — 1 -4 -6 -32 1 -3 0 -3 0 -67 -5
date 0 -1 — 0 0 0 10 -1 2 0 0 -1 0

editor 1 10 0 — 0 0 2 0 0 0 0 -4 0
institution 0 4 0 0 — 0 6 0 0 3 -1 20 0

journal 8 -8 0 0 0 — -1 -1 0 0 -2 -8 0
location 0 15 -2 0 -8 0 — 0 0 -4 0 0 0

note 0 13 6 3 1 0 3 — 0 0 -1 20 0
pages 0 0 1 0 0 0 0 0 — 1 0 2 -4

publisher 8 13 0 1 -3 1 9 1 0 — 0 7 1
tech 0 0 -2 0 2 8 1 0 1 1 — 26 0
title -11 1 0 -7 -6 -10 -8 -2 1 2 0 — 0

volume 0 3 -2 0 0 -2 0 -2 1 0 -2 -1 —

Table 9 Relative confusion matrix for ParsCit versus Neural ParsCit on the Cross Domain dataset. Rows represent ground truth classes; columns,
predicted classes. The values represents the difference of confusion (PredictParsCit − PredictNeuralParsCit) aggregated over samples where
exactly one of the model predicts the class correctly. Negative entries indicate a win for the neural version.

Model ParsCit Neural ParsCit
Class Precision Recall F1 Precision Recall F1

Author 98.78 98.94 98.86 99.32 98.28 98.8
Booktitle 94.19 93.13 93.66 94.41 95.89 95.15
Date 97.94 97.92 97.93 98.87 98.23 98.55
Editor 90.67 92.86 91.75 88.01 92.02 89.97
Institution 78.29 95.77 86.15 91.44 90.97 91.2
Journal 91.92 91.45 91.68 90.88 91.86 91.37
Location 93.01 92.23 92.62 94.95 92.71 93.81
Note 58.69 87.54 70.27 65.62 93.61 77.15
Pages 98.59 98.39 98.49 99.27 98.56 98.91
Publisher 78.49 92.32 84.85 93.87 92.82 93.35
Tech 68.19 92.77 78.61 83.16 86.16 84.63
Title 97.85 95.5 96.66 98.34 97.16 97.74
Volume 95.24 94.26 94.75 95.49 95.37 95.43
Macro Average — — 90.48 — — 92.77
Micro Average — — 95.48 — — 96.47**

Table 10 ParsCit versus Neural ParsCit on multilingual data, where ‘**’ indicate significant improvements at the p < 0.01 on a one-tail paired
Student’s t-test.

author booktitle date editor institution journal location note pages publisher tech title volume
author — 0 1 3 0 0 0 0 0 0 0 26 0

booktitle 0 — 0 -11 -1 -1 -9 0 -1 -4 0 39 -4
date 0 0 — 0 0 1 11 2 0 0 0 -1 1

editor -29 18 0 — 0 0 -1 0 0 0 0 0 0
institution 1 24 0 0 — 0 5 0 0 3 -1 15 0

journal 4 3 0 0 0 — 0 1 0 0 -3 -15 0
location 0 15 1 0 -3 2 — 0 1 -1 0 1 0

note 0 7 11 4 2 0 0 — -2 0 1 6 -1
pages 0 -2 0 0 0 1 -1 0 — 1 0 2 6

publisher 3 15 1 2 0 1 5 1 0 — 0 22 1
tech 0 4 0 0 2 6 1 0 2 1 — 19 0
title -9 72 1 -3 -9 -4 3 -5 1 2 -2 — 0

volume 0 8 -3 0 0 -2 0 1 0 0 -2 0 —

Table 11 Relative confusion for ParsCit versus Neural ParsCit on multilingual data. Rows represent ground truth classes; columns, predicted
classes. The values represents the difference of confusion (PredictParsCit − PredictNeuralParsCit) aggregated over samples where exactly
one of the model predicts the class correctly.

classes, the CRF–BLSTM based models outperform the base-
line ParsCit, with minority class exceptions in minority classes
such as Date. However, as our comparison extends to more

complex dataset variations, the gap between our unsuper-
vised neural model and the baseline widens. Eventually, on
the complete dataset (Table 10) CRF–BLSTM outperforms
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all ParsCit variants by a large margin (4.52% token error rate
reduced to 3.53%, a relative 21% reduction in token error
rate). The final results show a 1% absolute micro F1 gain,
quite significant given the high performance of the base-
line. The relative gains (0.34 on 94.01 F1 score baseline)
are much better than that achieved by high order semi-CRFs
Cuong et al (2015) which are difficult to train.

Issue 3: Why is the CRF layer crucial? The deploy-
ment of a BLSTM without the use of a final stacked CRF
layer yields poor performance, as evidenced by the differ-
ence in performance between Tables 4 and 5. On closer anal-
ysis, we find that in the case where CRF is absent, the out-
put as seemingly randomly-assigned for some words. This
means that even though LSTMs are powerful enough to iden-
tify long-range dependencies, they can fail to leverage even
close contextual history information – such as in the case
where the labels of the past and future words might be the
same as the current word. We believe this may occur due
to the sparsity of the training data. To test this hypothesis,
we used unlabeled reference strings from the larger ACM
dataset – previously used to train word embeddings – ex-
tracting correct (but often noisy) labels from its associated
BibTeX, achieved by acquiring the paper metadata by crawl-
ing associated Digital Object Identifiers (DOIs4). We re-train
both models on 14K samples. The BLSTM model F1 score
increased significantly, resulting in a final 95.46% F1 micro
(cf CRF-BLSTM’s 95.78%). This validates our intuition that
BLSTM can learn these dependencies with sufficient train-
ing (noisy) samples. This also opens avenue for building en-
terprise solutions by crawling lot of noisy annotations from
multiple sources. Empirically speaking, the CRF–BLSTM
architecture proves to be the best, most robust configuration
in our experiments. A closer look at the CRF objective func-
tion reveals that the model requires less data to learn and
disfavors frequent changes in labels. This implies that CRF
makes the model more resilient to noise from the OOV’s
word embedding based features. By comparing the outputs
from Sections 5.1.5 and 5.1.4, we see that adding the CRF
layer restricts the switching of predicted class labels by ap-
proximately 12% (from 256 down to 225).

Issue 4: Could word embeddings tackle the multilin-
gual task directly? The current model adopts an interlin-
gua approach for multilingual reference string parsing; i.e.,
it translates any multilingual string to English and subse-
quently does the parsing of the English string. While this can
be effective, it requires the support of an (online API) trans-
lation system. With the availability of multilingual word em-
beddings and better access to raw multilingual (unlabeled)
reference strings data, unifying the embedding space for mul-
tiple languages can still be a challenging task. This direction
is promising to address the multilingual nature of knowledge
in future work.

4 https://www.doi.org/

7 Conclusion

We apply deep learning towards the task of reference string
parsing. Importantly, the deep learning architecture allows
the unsupervised induction of features tuned towards the ref-
erence string parsing task. Our work demonstrates the su-
periority of abstract numeric representations of the words
learned from unlabeled data as compared to handcrafted and
dictionary features. Our work shows how the generic long
short-term memory (LSTM) model can be imbued with more
power by using both general domain pre-trained and in-domain
learned word embeddings. For multilingual datasets, we ex-
plored a unified approach, where we translated the reference
string to English, parsed them using the proposed technique
and propagated the parses and labels back into the original
language string.

Our work highlights the importance of using a condi-
tional random field (CRF) layer to increase the robustness of
the model, attaining par performance with the handcrafted,
state-of-the-art systems. In all our proposed models, we get
consistent significant macro and micro F1 gains over the
existing ParsCit version, already acknowledged as a strong
baseline on this task.
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